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UNIT - III 

• Simple Linear Regression Model and Multiple 
Linear Regression Model  

• Meaning – Specification of model- 
assumptions of SLRM – Stochastic and Non-
stochastic- OLS – Specification, Estimation, 
Evaluation and application – Gauss – Markov 
theorem – problems – Multiple linear 
Regression model - Meaning 



• Simple Linear Regression Model 
• Introduction 
      Economic Theory is concerned with the relations between 
variables, eg. Cost function, demand function, production function.  
     The entire body of economic theory can be regarded as a 
collection of relations among variables. 
• Relations between variables 
     A systematic study of economics is possible only because the 
different parts of an economy are inter-related. 
     These relations either deterministic or stochastic.  
     A relation between X and Y which are characterised as Y = f(X) 
will be deterministic, if for each value of X there is only one 
corresponding value of Y. 
    A relation between X and Y is said to be stochastic , if each value 
of X there is a whole probability of distribution of values of Y. i.e. for 
any given value of X , the Y variable may assume some specific 
value or fall within some specific interval.    
 



    We will see how to establish the relationship. For eg., if we 
have a statement that consumption depends on income. This 
can be expressed as, 
                C = f(Y) 
     It shows that a change in Y causes a change in C and a 
change in C due to a change in Y or there is a cause and effect 
relation ship between the two ( Y is cause and C is effect). This 
form of relationship is called an implicit functional form. 
    the functional form does not serve our purpose fully. So it is 
to be specified. The specific form will describe the intercept, 
slope and curveture etc.  
• Linear relationship between two variables  
      The linear relationship will be, 
                     Y = α + βX 
       Econometrics concerned with testing the above form of 
relation and with estimating parameters α and β. 



• Simple Linear Regression model 

• Meaning and specification of the model 

       A simple linear regression model (SLRM) includes only two variables with linear 
relationship between them. It is the form, 

            Y = α + βX + u 

   Where, 

          Y is endogenous or dependent variable 

          X is exogenous or explanatory variable 

          u is error or random or stochastic variable 

          α is constant regression parameter or intercept on Y axis (Y when X = 0) 

           β is slope regression parameter, which measures the rate of change or marginal value  
ΔY/ ΔX. It is the effect of a unit change in X on Y. 

  In this model (α + βX) is called systematic component.  

The error or stochastic term ‘u’ includes, 

1. Influence of variables omitted in the model. 

2. Errors due to aggregation of macro variables. 

3. Errors due to measurement of variables 

4. Errors due to misspecification of the model. 

If Y = α + βX +u represents demand function then Y is quantity demanded and X is the price 
level of the commodity. According to Marshall’s law of demand  for normal goods,  α 
(maximum demand) is positive and β is negative (due to inverse relation between price and 
demand). 



Estimation of SLRM 
     In order to estimate the model Ordinary Least Squares 
(OLS) method is used due to the following reasons. 
    OLS estimators are,  
i. BLUE 
ii. Simple to understand and easy to calculate 
iii. Provides more reliable results in a wide range of 

problems. 
     For a sample of i = 1, 2, 3, …. n if i refers to the item. 
True relation is Yi = α + β Xi + ui   and 
True regression is E(Yi) = α + βXi 

Estimated relation is Yi = α+̂β̂Xi + ei 

Estimated Regression is Ŷi = α+̂β̂Xi  
The method of least squares is based on the stochasting and 
non-stochasting assumptions 



Assumptions of SLRM 
Stochastic Assumptions 
     These are the assumptions about the random term u. They are; 
i. ui is a real random variable for all i = 1,2,3…n 
ii. Mean value of ui is zero even though in individual cases it may 

have positive or negative values.  E(ui) = 0 for all i = 1,2,3….n 
iii. Variance of ui is constant for every ui.  
        Var (ui) = E(ui

2) σi
2, for all i = 1,2,3….n 

            This assumption states that the error terms are homoscedastic. 
iv.     The term ui has a normal distribution. 
          ui is N(0, σi

2) for all i = 1,2,3,…n 
v. The random terms ui and uj are not correlated which means that 

there exists non-auto correlated error terms 
            E(ui uj) = 0  for all i ≠ j 
vi. ui is independent of the of the explanatory variables. 
             E(uX) = 0 or X’s are purely exogenous. 



Non – stochastic Assumptions 

    These are the assumptions about the systematic 
component  (α + βX) of the model 

i. The relationship being estimated is just identified. 

ii. The relationship is correctly specified and there is no 
misspecification or specification error. 

iii. The explanatory variables are measured without 
errors, which means that there is no measurement 
error. 

iv. The macro variables are correctly aggregated. 

v. The explanatory variables are not perfectly linearly 
correlated, which implies that there is no multi – 
collinearity problem. 

 



OLS ( Ordinary least squares) 
       According to this method of estimation the sum of squares of deviations of the 
actual values should be minimised. 
     Ʃei

2 = Ʃ (y - Ŷi )
2 = Ʃ *Yi – (α̂ + βXi)]

2   is minimised 
     Differentiating with respect to α̂ and β̂ respectively 

    
𝜕

𝜕α 
 (Ʃei

2) = - 2 Ʃ(Yi - α̂ - β̂Xi) = 0    and 

    
𝜕

𝜕β 
 (Ʃei

2) = -2 ƩXi(Yi - α̂ - β̂Xi) = 0  

On rearranging these two, we get the following two equations 
    Ʃyi = nα̂ + β̂ ƩXi      --------- 1 
    ƩXiYi = α̂ƩXi + β̂ ƩXi

2 ------- 2 
 
Solving these two equations we get  
   
  α̂ = Y̅ - β̂ X̅        and 
     

β̂ = 
Ʃ𝑥𝑖𝑦𝑖

Ʃ𝑥𝑖2
  

 
Where xi =  Xi - X̅  ,          yi = Yi - Y̅         and xi

2 = Ʃxi -nX̅2 

 
  



Properties of OLS estimators (Gauss – Markov 
Theorem) 

       In a SLRM, Yi = α + βXi + ui the OLS estimators 
are optimal (BLUE) 

1. Linearity: The OLS estimator is a linear function 
of the sample values. 

2. Unbiasedness: Expected value of the estimator 
is equal to is actual value. 

3. Minimum Variance: OLS estimators have 
minimum variance 

Thus α ̂and β̂ are BLUE or OLS estimators are Best, 
Linear, Unbiased Estimators.  



Evaluation of SLRM 
Economic criteria: The signs and magnitude of the estimated parameters are 
to be verified for economic theory. 
Statistical criteria: Using standard error values, the statistical tests of 
significance are to be conducted to evaluate the precision of estimates. If 
necessary the the confidence intervals are to be worked out. 
    When the sample is large (n > 30), 

        Z = 
β − β0

𝑆𝐸(β )
     (H0: β = β0)        and 

        Z = 
β 

𝑆𝐸(β )
       (H0: β = 0) 

    When the sample is small (n<30) 

       tn-2 = 
β  − β0

𝑆𝐸(β )
     (H0: β = β0)       and 

       tn-2 = 
β 

𝑆𝐸(β)
         (H0: β = 0) 

     with degrees of freedom (n – 2). Comparing the calculated values, if they 
are greater than the respective table values the H0 is rejected at fixed level of 
significance. So the estimated parameters are concluded to be significant. 



Economic criteria: Using R2 (Coefficient of determination) 
value, its significance is tested to assess the forecasting 
ability of the model. 
     In case of small and large samples 

         F(p-1, n-p) = 

𝑅2

𝑝 −1
1 −𝑅2

𝑛 −𝑝

      (H0: R2 = 0) 

         F(1, n-2) = 
𝑅2

1−𝑅2 𝑛 − 2  (H0: R2 =0) 

When n = sample size, p = number of estimated 
parameters with d.f. = (1, n-2) 
    If F>F5% then H1 is accepted at 5% level of significance 
and vice versa. 
    For confidence limits for β is  
                 β̂ ± Table value of test statistic (S.E(β̂)) 
 
 



Application of SLRM 
     In the conventional format the reports of regression analysis are 
presented with the estimated equation, the standard error values of 
parameters and the value of R2. 
For example, 
In demand analysis, the estimated linear demand function is, 
     Ŷ = α ̂+ β̂X 
     Ŷ = 45.86** - 3.45**X with R2 = 0.934** 
With S.E (α)̂ = 8.25 and S.E (β̂)= 1.25,    n= 25 
** denotes significant at 1% level of significance. 
        R2 value indicates the goodness of fit and forecasting ability while 
the significance of the parameters indicates the precision of 
estimators. It shall be derived from the fitted linear demand function 
that price effect is negative. It shows inverse relation between price 
and demand, for one unit increase in price, demand is found to fall by 
3.45 units on an average. When the commodity becomes free, the 
maximum demand for it becomes 45.86. For this commodity 93.4% of 
change in demand is due to the linear influence of its price. 

 



• 1. Estimate the linear cost function and evaluate 
it. 

 Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Total 
Cost 
(000$) 
(Y) 

150 140 160 170 150 162 185 165 190 185 

Quant
ity 
Produ
ced 
(000 
units) 

40 42 48 55 65 79 88 100 120 140 



Specification: Linear cost function is  

                         Yi = α + βXi + ui 

           Yi = Total Cost (000$) 

           Xi = Total quantity produced (000 units) 

           ui = Error term 

           α  = Total fixed cost (Constant regression 
Parameter ) 

           β  = Marginal cost (slope regression 
parameter) 

 

           



Year X Y x 
(X - X̅) 

Y 
(Y - Y̅) 

xy x2 y2 

2006 40 150 - 37.7 -15.7 591.89 1421.29 246.49 

2007 42 140 -35.7 -25.7 917.49 1274.49 660.49 

2008 48 160 -29.7 -5.7 169.29 882.09 32.49 

2009 55 170 -22.7 -4.3 -97.61 515.29 18.49 

2010 65 150 -12.7 -15.7 199.39 161.29 246.49 

2011 79 162 1.3 -3.7 -4.81 1.69 13.69 

2012 88 185 10.3 19.3 198.79 106.09 372.49 

2013 100 165 22.3 -0.7 -15.61 497.29 0.49 

2014 120 190 42.3 24.3 1027.89 1789.29 590.49 

2015 140 185 62.3 19.3 1202.39 3881.29 372.49 

777 1657 4189.1 10530.1 2554.07 



𝑋 =
Ʃ𝑥

𝑛
=

777

10
= 77.7 

𝑌 =
Ʃ𝑦

𝑛
=

1657

10
= 165.7 

Estimation: Using OLS method of Estimation 

 β =  
Ʃ𝑥𝑦

Ʃ𝑥2 =
4189.1

10530.1
= 0.398 

 𝛼 = 𝑌 − 𝛽 𝑋 = 165.7 − 0.398 77.7 = 134.775 
Estimated cost function is    𝑌  = 134.775 + 0.398 X 
Evaluation : Using Gauss – Markov theorem 

               r2 = 
β (Ʃ𝑥𝑦)

Ʃ𝑦2   =  
(0.398)(4189.1)

2554.07
 = 0.653 

             Ʃe2 = (1 – r2) (Ʃ𝑦2)    = 1 – 0.653) (2554.07) = 886.26 

            SE(β ) = (
Ʃ𝑒2

𝑛 −2
)(

1

Ʃ𝑥2)   =  (
886.26

8
)(

1

10530.1
)     = 0.103 

            SE(α )  =  ( 
Ʃ𝑒2

𝑛 −2
 ) (

Ʃ𝑋2

𝑛Ʃ𝑥2 )          ƩX2 = Ʃ𝑥2 + 𝑛𝑋 2   = 10530.1+10(77.7)2 = 70903 

                       = ( 
886.26

8
 ) (

70903

10(10530.1
)                     

                       = 74.59      = 8.6368 



Tests of Significance 
For β  

        tn-2 = 
β 

𝑆𝐸(β )
  (H0: β = 0) 

        t8   = 
0.398

0.103
   = 3.864 

For α  

        tn-2 = 
α 

𝑆𝐸(α )
  (H0: α = 0) 

        t8     = 
134.775

8.6368
    = 15.60 

 For degrees of freedom 8 (one sided test) t5% = 1.860 and t1% = 2.896 

Here, for β  calculated ‘t’ value is greater than table value at 1% level of significance 

     Therefore, β  is significant at 1% level. 
For α  calculated ‘t’ value is greater than table value at 1% and 5% levels of significance. 
      Therefore α  is significant at 1% level. 
For R2 

       F(p-1, n-p) = 

𝑅2

𝑝−1
1−𝑅2

𝑛−𝑝

          F(1, 8) = 
0.653

1
0.347

8

   = 
0.653

0.0433
   = 15.055 

For degrees of freedom (1, 8) F5%  = 5.32 and    F1% = 11.26 
calculated F value is greater than the table value at 1% level 
Therefore,  R2 is significant at 1% level. 
    



The fitted cost function is 
    𝑌  = 134.775** + 0.398** X   with R2 = 0.653** 

    SE(α ) = 8.638      SE (β ) = 0.103      n = 10 
Note: ** indicates significant at 1% level 
Application: The constant regression parameter is significant 
at 1 per cent level. It’s positive value implies that total fixed 
cost (Y) is 134.775 when the quantity produced is zero and 
hence it is the short run cost function. 
    The slope regression parameter is significant at 1% level. Its 
positive value indicates that for every 1000 units increase in 
production (X) there is an increase of $398 in total cost. So, 
marginal cost is constant. 
    R2 is significant at 1% level. Its value implies that 65.3% of 
change in cost is due to the linear influence of production and 
34.7% of the change due to the influence of other variable. 



SLRM        Y = α + βX + u 

1. 𝑋 =
Ʃ𝑋

𝑛
 

2. 𝑌 =
Ʃ𝑌

𝑛
 

3. β =  
Ʃ𝑥𝑦

Ʃ𝑥2  

4. 𝛼 = 𝑌 − 𝛽 𝑋  

5. r2 = 
β (Ʃ𝑥𝑦)

Ʃ𝑦2  

6. Ʃe2 = (1 – r2) (Ʃ𝑦2) 

7.  SE(β ) = (
Ʃ𝑒2

𝑛 −2
)(

1

Ʃ𝑥2)  

8. SE(α )  =  ( 
Ʃ𝑒2

𝑛 −2
 ) (

Ʃ𝑋2

𝑛Ʃ𝑥2 ) 

9. ƩX2 = Ʃ𝑥2 + 𝑛𝑋 2  
Tests of Significance 
For β  

        tn-2 = 
β 

𝑆𝐸(β )
  (H0: β = 0) 

For α  

        tn-2 = 
α 

𝑆𝐸(α )
  (H0: α = 0) 

For R2 

       F(p-1, n-p) = 

𝑅2

𝑝−1
1−𝑅2

𝑛−𝑝

               Where p is number of parameters 

 
 









1. Estimate linear supply function for the following 
data and evaluate it. 

 
 
Specification 
Linear Supply function is 
     Yi = α + βXi +ui 

     Yi  = Supply in million tons 
     Xi = Price Rs. Per ton 
     ui = Error term 
     α  = Constant regression Parameter  
     β  = slope regression parameter 
      

Supply (Y) in Million Tons 12 10 8 9 12 15 11 10 8 2 

Price (X) in Rs. Per ton 5 10 7 8 12 14 10 8 5 2 



X Y X 
(X-X̅) 

Y 
(Y-Y̅) 

xy x2 y2 

5 12 - 3.1 2.3 - 7.13 9.61 5.29 

10 10 1.9 0.3 0.57 3.61 0.09 

7 8 - 1.1 - 1.7 1.87 1.21 2.89 

8 9 - 0.1 - 0.7 0.07 0.01 0.49 

12 12 3.9 2.3 8.97 15.21 5.29 

14 15 5.9 5.3 31.27 34.81 28.09 

10 11 1.9 1.3 2.47 3.61 1.69 

8 10 - 0.1 0.3 - 0.03 0.01 0.09 

5 8 - 3.1 - 1.7 5.27 9.61 2.89 

2 2 - 6.1 - 7.7 46.97 37.21 59.29 

ƩX = 81 ƩY = 97 90.3 114.81 106.1 



X̅ = 
Ʃ𝑋 
𝑛

 = 
81

10
 = 8.1 

Y̅ = 
Ʃ𝑌

𝑛
 = 

97

10
 = 9.7 

Estimation: Using OLS method of Estimation 

 β =  
Ʃ𝑥𝑦

Ʃ𝑥2 =
90.3

114.81
= 0.787 

  

                 𝛼 = 𝑌 − 𝛽 𝑋 = 9.7 − 0.787 8.1 = 3.33 
Estimated supply function is    𝑌  = 3.33 + 0.787X 
Evaluation : Using Gauss – Markov theorem 

               r2 = 
β (Ʃ𝑥𝑦)

Ʃ𝑦2   =  
0.787 (90.3)

106.1
 = 0.67 

             Ʃe2 = (1 – r2) (Ʃ𝑦2)    = (1 – 0.67) (106.1) = 35.013 

            SE(β ) = (
Ʃ𝑒2

𝑛 −2
)(

1

Ʃ𝑥2)   =  (
35.013

8
)(

1

114.81
)     = 0.195 

            SE(α )  =  ( 
Ʃ𝑒2

𝑛 −2
 ) (

Ʃ𝑋2

𝑛Ʃ𝑥2 )          ƩX2 = Ʃ𝑥2 + 𝑛𝑋 2   = 114.81+10(8.1)2 = 770.91 

                        = ( 
35.013

8
 ) (

770.91

10(114.81)
)                     

                        = 1.71 



Tests of Significance 
For β  

        tn-2 = 
β 

𝑆𝐸(β )
  (H0: β = 0) 

        t8   = 
0.787

0.195
   = 4.036 

 
For α  

        tn-2 = 
α 

𝑆𝐸(α )
  (H0: α = 0) 

        t8     = 
3.33

1.71
    = 1.95 

 For degrees of freedom 8 (one sided test) t5% = 1.860 and t1% = 2.896 
Here, for β  calculated ‘t’ value is greater than table value at 1% level of significance 

     Therefore, β  is significant at 1% level. 
For α  calculated ‘t’ value is greater than table value at 5% level of significance. 
      Therefore α  is significant . 
For R2 

       F(p-1, n-p) = 

𝑅
2

𝑝−1
1−𝑅2

𝑛−𝑝

          F(1, 8) = 
0.67

1
0.33

8

   = 
0.67

0.041
   = 16.34 

For degrees of freedom (1, 8) F5%  = 5.32 and    F1% = 11.26 
calculated F value is greater than the table value at 1% level 
Therefore,  R2 is significant at 1% level. 
    
 



Fitted linear supply function is 
 𝑌  = 3.33* + 0.787** X   with R2 = 0.67** 
    SE(α ) = 1.71    SE (β ) = 0.195      n = 10 
Note: NS denotes not significant 
           ** denotes significant at 1% level 
             * denotes significant at 5% level 
Application: 
     Price effect (β) = 0.787 implies that for every 1 rupee 
increase in the price of the commodity per ton, its supply 
is expected to increase by 0.787 million tons. 
    R2 = 0.67 implies that 67% of change in supply is due to 
the linear influence of price. Since the estimated 
parameters and R2 are significant, the estimated linear 
supply function is a good fit. 



2. The following table indicates the price and 
quantity demanded of the productover a six 
year period 

 

 

 

 

Estimate the demand function and evaluate it. 
And estimate the average elasticity of demand. 

 

 

 

Year 2012 2013 2014 2015 2016 2017 

Quantity 
(in 
Thousand 
Yards) 

8 3 4 7 8 0 

Price (in $ 
per Yard) 

2 4 3 1 3 5 



ƩX = 18 
ƩY = 30 
X̅ = 3 
Y̅ = 5 
Ʃxy = - 19 
Ʃx2 = 10 
Ʃy2 = 52 
β̂ = - 1.9 
α̂ = 5- (- 1.9)(3) = 5 – (-5.7) = 5 + 5.7 =  10.7 
Estimated demand function 
Ŷ = 10.7 – 1.9X 
R2 = 0.69 
Ʃe2 = 16.12 
SE(β̂) = 0.635 
ƩX2 = 64 
SE (α)̂ = 2.07 
Test of significance 
For β̂      t4 = 2.99 
For α ̂     t4 = 5.17 
For degrees of freedom 4 table value t5% = 2.132 and t1% = 3.747 
For β̂ the calculated t value is greater than the table value at 5% level of significance 
Therefore β̂ is significant at 5% level. 
For α ̂the calculated value is greater than the table value at 5% as well as 1% level of significance 
Therefore α ̂is significant at 1% level. 
For R2     F(1, 4) = 8.90 
For degrees of freedom (1, 4) , F5% = 7.71 and F1% = 21.20 
F calculated value is greater than F table value at 5% level of significance . Therefore R2 is significant at 5% level. 
   



4. Fit a linear demand function for the following 
data. Also estimate ep and interpret your 
answer. 

 

 

5. Estimate a linear cost function for the 
following data. 

 

 

Price 
 

20 
 

24 
 

28 
 

32 
 

36 
 

40 
 

Demand 80 72 65 60 54 45 

Production 40 42 48 55 65 79 88 100 120 140 

Cost 150 140 160 170 150 162 185 165 190 185 



Fitted Demand Function is  
Ŷ = 10.7** - 1.9*X            with R2 = 0.69 
SE (α)̂ = 2.07     SE (β̂) = 0.635   n= 6 
    The price effect (β) = - 1.09 implies that for every one rupee increase 
in price per yard, its demand is expected to decrease by 1.09 thousand 
yards. The negative β value shows that there is inverse relationship 
between price and quantity demanded. Therefore the theory of 
demand also verified. 
    R2 = 0.69 implies that 69% of change in demand is due to linear 
influence of price. Since the estimated parameters and R2 are 
significant, the estimated simple linear demand function is a good fit. 
 
The average elasticity of demand is 

EYX = β̂(
𝑋 

𝑌 
) 

        = - 1.09 (
3

5
 ) 

        = - 0.654 



6. Obtain 95% confidence interval for the parameters of the linear model when the values are in usual notation. 
ƩX = 301    ƩXY = 11459   ƩY = 266    ƩX2 = 12971   
n = 7     ƩY2 =10136 
Answer 
Linear model is 
Y= α + βX +u 

X̅ = 
ƩX 
𝑛

 = 
301

7
 = 43          Y̅ = 

ƩY 
𝑛

 = 
266

7
 = 38 

Ʃxy = ƩXY - 𝑛𝑋 𝑌  
       = 11459 – 7(43) (38) 
       = 21 
Ʃx2 = ƩX2 – n X̅2 

      = 12971 – 7 (43)2 

      = 28 
Ʃy2 = ƩY2 – n Y̅2 

       = 10136 – 7(38)2 

       = 28 

β̂ = 
Ʃ𝑥𝑦

Ʃ𝑥2   = 
21

28
 = 0. 75 

 
α̂ = Y̅ - β ̂X̅ 
    = 38 – 0.75 (43) 
    = 5.75 

R2 = 
β (Ʃ𝑥𝑦)

Ʃ𝑦2   = 
0.75 (21)

28
 = 0.56 

Estimated SLRM is     Ŷ = 5.75 + 0.75X     with R2 = 0.56 
 
Ʃe2 = (1 – R2) Ʃy2 

       = (1 – 0.56) 28  = 12.32 

SE(β ) = (
Ʃ𝑒2

𝑛 −2
)(

1

Ʃ𝑥2)   =  (
12.32

5
)(

1

28
)     = 0.296 

SE(α )  =  ( 
Ʃ𝑒2

𝑛 −2
 ) (

Ʃ𝑋2

𝑛Ʃ𝑥2 )  

           = ( 
12.32

5
 ) (

12971

7(28)
)                     

                         
         = 12.77 
95% confidence interval for β  

 β  ± T0.05 SE(β )   = 0.75 ± 2.015 (0.296) 
                             = 0.75 + 0.596,   0.75 – 0.596 
                             = 1.346,   0.154 
 
95% confidence interval for α  
α  ± T0.05 (SE(α ))  = 5.75 ± 2.015(12.77) 
                              = 5.75 + 25.732,   5.75 – 25.732 
                              = 31.48,  - 19.982 



7. Obtain 95% and 99% confidence limits for parameters for the following intermediate results. 
ƩX = 150     ƩY = 35    ƩXY = 900    ƩX2 = 5500 
ƩY2 = 255    n = 5 
Answer 
SLRM is 
Y = α + βX + u 

X̅ = 
ƩX 
𝑛

 = 
150

5
 = 30          Y̅ = 

ƩY 
𝑛

 = 
35

5
 = 7 

Ʃxy = ƩXY - 𝑛𝑋 𝑌  = 900 – 5(30)(7) = -150 
Ʃx2 = ƩX2 – n X̅2 

       = 5500 – 5(30)2 

       = 1000 
Ʃy2 = ƩY2 – n Y̅2 

      = 255 – 5(7)2 

      = 10 

β̂ = 
Ʃ𝑥𝑦

Ʃ𝑥2   = 
− 150

1000
 = - 0.15 

 
α̂ = Y̅ - β ̂X̅  
   = 7 – (- 0.15)(30)    = 7 + 4.5   = 11.5 

R2 = 
β (Ʃ𝑥𝑦)

Ʃ𝑦2   = 
− 0.15(−150)

10
 = 2.25 

Estimated SLRM is     Ŷ = 11.5 – 0.15 X     with R2 = 2.25 
Ʃe2 = (1 – R2) Ʃy2 

       = (1 – 2.25) 10      = - 12.5 

SE(β ) = (
Ʃ𝑒2

𝑛 −2
)(

1

Ʃ𝑥2)   =  (
− 12.5

3
)(

1

1000
)     =  - 0.063 

SE(α )  =  ( 
Ʃ𝑒2

𝑛 −2
 ) (

Ʃ𝑋2

𝑛Ʃ𝑥2 )  

           = ( 
− 12.5

3
 ) (

5500

5(1000)
)           = - 2.14 

 
95% confidence interval for β                                                                      95% confidence interval for α  
 

 β  ± T0.05 SE(β )   = - 0.15 ± 2.353 (- 0.063)                                                 α  ± T0.05 (SE(α ))  = 11.5 ± 2.353(- 2.14) 
                             = - 0.15 +(- 0.148),   - 0.15 – (- 0.148)                                                        = 11.5 ± (- 5.035) 
                             = - 0.298,  - 0.002                                                                                          = 11.5 + (- 5.035),   11.5 – (- 5.035) 
                                                                                                                                                        = 11.5 – 5.035,     11.5 + 5.035 
                                                                                                                                                        = 6.465,   16.535 
 
99% confidence  interval for β ̂                                                                   99% confidence limits for α ̂

β  ± T0.01 SE(β )        = - 0.15 ± 4.541(- 0.063)                                                 α  ± T0.01 (SE(α ))  = 11.5 ± 4.541 (- 2.14)               
                                  = - 0.15 ± (- 0.286)                                                                                         = 11.5 ± (- 9.72)                    
                                  = - 0.15 + (- 0.286), - 0.15 – (- 0.286)                                                         = 11.5 + (- 9.72),    11.5 – (- 9.72) 
                                  = - 0.15 – 0.286,   - 0.15 + 0.286                                                                  = 11.5 – 9.72,      11.5 + 9.72 
                                  = - 0.436,     0.136                                                                                           =  1.78,    21.22 



8. Estimate and evaluate linear consumption function for n = 18,    C ̅ = 32,     Y̅ = 75  
(C = consumption  Y = Income)    ƩC2 = 6293,  
ƩY2 =11390, ƩCY = 4064. Interpret your results. 
Answer 
Consumption depends on Income 
Dependent variable = Consumption (C) 
Independent variable = Income (Y) 
Specification 
Linear consumption function is 
C = α + βY + u 
Where, C = Consumption 
               Y = Income 
               u = Error term 
               α = Constant regression parameter 
               β = Slope regression parameter 
Estimation                                                            ( Y = C, X =Y) 

   β  = 
Ʃ𝑦𝑐

Ʃ𝑦2   

Ʃyc = ƩYC – n(Y̅)(C ̅) 
       = 4064 – 18(75)(32) 
       = - 39136 
Ʃy2 = ƩY2 – n Y̅2 

       = 11390 – 18(75)2 

       = - 89860 
Ʃc2 = ƩC2 – n C2̅ 

      = 6293 – 18(32)2 

      = - 12139 

β  = 
Ʃ𝑦𝑐

Ʃ𝑦2   = 
−39136

−89860
 = 0.435 

α̂ = C ̅- β̂Y̅ 
    = 32 – 0.435(75) 
    = - 0.625 
Estimated linear consumption function is 
Ĉ = -0.625 + 0.435Y  
Evaluation 

 r2 = 
β (Ʃ𝑐𝑦)

Ʃ𝑐2   =  
0.435(−39136)

−12139 
 = 1.402 

Ʃe2 = (1 – r2) (Ʃc2) = (1 – 1.402) (-12139) = 4879.8 

 SE(β ) = (
Ʃ𝑒2

𝑛 −2
)(

1

Ʃ𝑦2)   =  (
4879.8

16
)(

1

−89860
)           = - 0.174 

SE(α )  =  ( 
Ʃ𝑒2

𝑛 −2
 ) (

Ʃ𝑌2

𝑛Ʃ𝑦2 )                                                                     

            = ( 
4879.8

16
 ) (

11390

18(−89860)
)        = - 1.465 

             
 



Tests of Significance 
For β  

        tn-2 = 
β 

𝑆𝐸(β )
  (H0: β = 0) 

        t16   = 
0.435

0.174
   = 2.5 

For α  

        tn-2 = 
α 

𝑆𝐸(α )
  (H0: α = 0) 

        t16     = 
0.625

1.465
    = 0.427 

 For degrees of freedom 16 (one sided test) t5% =1.746  and t1% = 2.583 

Here, for β  calculated ‘t’ value is greater than table value at 5% level of significance 
Therefore, β  is significant at   5% level. 
For α  calculated ‘t’ value is lesser than the table value at5% and 1% level of significance 
Therefore α  is not significant . 
 
For R2 

       F(p-1, n-p) = 

𝑅
2

𝑝−1
1−𝑅

2

𝑛−𝑝

          F(1, 16) = 
1.402

1
1 −1.402

16

   = 
1.402

− 0.025
   = 56.08 

For degrees of freedom (1, 16) F5%  =4.49  and    F1% =8.53  
calculated F value is greater than table value at 1% and 5% level of significance 
Therefore,  R2 is significant at 1% level 
 
Fitted linear consumption function is 
Ĉ = 0.625NS + 0.435* X        with R2 =1.402** 
   SE(α̂) = 1.465        SE(β̂) = 0.174        n = 18 
Note: NS denotes not significant ,  * denotes Significant at 5%,  ** denotes significant at 1% 
Application 
     The constant regression parameter is not significant . Its positive value implies that the total consumption C is 0.625 when the income is zero. 
     The slope regression parameter is significant at 5% level.  Its positive value implies that if income increases consumption will also increase. If 1 rupee 
increase in income will increase the consumption by Rs. 0.435 . 
     R2 = 1.402 implies that 140.2% change in consumption is due to the linear influence of income.   



9. Estimate and evaluate food demand function(Y) on national product (X) for n = 25,  
ƩX = 450, ƩY = 325,   Ʃ𝑥2 =  394.4,      Ʃ𝑦2 = 21.6,   
Ʃ𝑥𝑦 = 80.20. 
Answer 
Specification 
The linear food demand function is 
Y = α + βX + u 
Y = Food demand 
X = National Product 
α = constant regression parameter 
 β = slope regression parameter 
u = error term 
Estimation 

β̂ = 
Ʃ𝑥𝑦

Ʃ𝑥2  = 
80.20

394.4
 = 0.203 

 

X ̅ = 
ƩX 
𝑛

 = 
450

25
 = 18          Y̅ = 

ƩY 
𝑛

 = 
325

25
 = 13 

 
α̂ = Y̅ - β̂ X ̅    =  13 – 0.203 (18)  =  9.346 
Estimated food demand function is 
Ŷ = 9.346 + 0.203X 
Evaluation 

R2 = 
β (Ʃ𝑥𝑦)

Ʃ𝑦2   = 
0.203 (80.20)

21.6
 = 0.754 

 
Ʃe2 = (1 – R2) Ʃy2 

       = (1 – 0.754) (21.6) =  5.314 
 

SE(β ) = (
Ʃ𝑒2

𝑛 −2
)(

1

Ʃ𝑥2)   =  (
5.314

23
)(

1

394.4
)     = 0.022 

 

SE(α )  =  ( 
Ʃ𝑒2

𝑛 −2
 ) (

Ʃ𝑋2

𝑛Ʃ𝑥2 )                         ƩX2 = Ʃx2 +nX̅2 = 394.4 + 25(18)2 = 8494.4  

           = ( 
5.314

23
 ) (

8494.4

25(394.4)
)       = 0.446 

 



Tests of Significance 
For β  

        tn-2 = 
β 

𝑆𝐸(β )
  (H0: β = 0) 

        t23   = 
0.203

0.02
   = 10.15 

For α  

        tn-2 = 
α 

𝑆𝐸(α )
  (H0: α = 0) 

        t23     = 
9.346

0.446
    = 20.96 

 For degrees of freedom 23 (one sided test) t5% = 1.714 and t1% = 2.500 
Here, for β  calculated ‘t’ value is greater than table value at 1% level of significance 

     Therefore, β  is significant at 1% level. 
For α  calculated ‘t’ value is greater than table value at 1% level of significance. 
      Therefore α  is significant at 1% level. 
For R2 

       F(p-1, n-p) = 

𝑅
2

𝑝−1
1−𝑅

2

𝑛−𝑝

          F(1, 23) = 
0.754

1
1 −0.754

23

   = 
0.75

0.011
   =68.54 

For degrees of freedom (1, 23) F5%  = 4.28 and    F1% = 7.88 
calculated F value is greater than the table value at 1% level 
Therefore,  R2 is significant at 1% level. 
Fitted Food Demand Function is 
Ŷ = 9.346** + 0.203**X               with R2 = 0.754** 
SE (α̂) = 0.446      SE(β̂) = 0.02      n =25 
** denotes significant at 1% 
Application 
     The constant regression parameter is significant at 1% level. It’s positive value implies that the total food demand is 9.346 when the national product 
zero. 
      The slope regression parameter is significant at 1% level. It’s positive value implies that for every 100 unit increase in national production there is an 
increase of 20.3 units of demand. 
     R2 is significant at 1% level. It’s value implies that 75.4%  change in food demand is due to the linear influence of national product. The remaining 24.6 % 
of change is due to the influence of other factors. 



Multiple Linear Regression Model (MLRM) 
 A multiple linear regression model (MLRM) includes many explanatory 
variables. Consider a multiple linear consumption function with two explanatory 
variables of the form; 
        Yi = β0 + β1i X1i + β2i X2i +ui 

Where  
Yi = Consumption expenditure for ith household 
X1i = Consumer’s disposable income 
X2i = Wealth of ith household 
ui = Error term 
β0 = constant regression parameter 
β1 = Slope or partial regression parameter 
β2 = slope or partial regression parameter 
  β1 and β2 provide changes in the dependent variable Y for a unit change in 
the respective explanatory variable.  
According to keynesian  Law of consumption, 
β0 is positive which is the minimum subsistence level of consumption 
β1 is positive due to direct relation between income and consumption 
β2 is also positive due to direct relation between wealth and consumption.  
 



UNIT - IV 
SPECIFICATION IN OLS ESTIMATION 

Auto Correlation- Multi-collinearity – heterocedasticity – causes and 
consequences 

MULTI – COLLINEARITY 
Meaning: The term multi collinearity is used to denote the presence of 

perfect linear relationship between the explanatory variables of the 
multiple linear regression model.  

 For application of least squares, there is an important condition, 
that the explanatory variables are not perfectly correlated (there is 
no correlation between explanatory variables rx1 ; rx2≠ 1)  

 If there is perfect linear correlation between the explanatory 
variables, the computed parameters will not be correct 
one.(because by the method of least squares the condition for least 
squares in those variables should not correlated)  On the other 
hand the explanatory variables are not perfectly correlated then the 
variables are called Orthogonal (rx1 ; rx2≠ 0) 

 



Sources or Causes of Multi-collinearity 
1. In time series data significant secular trend leads 

to multi collinearity. It is due to the fact that 
many economic variables tend to move together 
over time. For example population, production, 
laour force, income, investment and price. 

2. It arises due to the use of lagged value of the 
explanatory variables in the multiple linear 
regression model C1 = f(Yt, Yt-1). It occurs in the 
distributed log model (Auto Regressive model). 

 Thus multi collinearity is a serious problem in 
time series data and it is quite frequent in cross 
section data also. 



Consequences of Multi collinearity 
 If there is perfect linear relationship between explanatory variables, that 

is rx1x2 = 1, then  
1. The estimates of the co-efficients are indeterminate. 
2. The standard errors or variances of estimates become infinitely large. 
I. Take two explanatory variables model 
           Y = β0 + β1X1 + β2X2 + u 
Where X1 and X2 are perfectly correlated with the exact relation X1 = aX2 

The formula for the β̂̂1 and β̂2 are 

β̂1   = 
Ʃ𝑥1𝑦 Ʃ𝑥2

2 −(Ʃ𝑥2𝑦)(Ʃ𝑥1𝑥2)

Ʃ𝑥1
2 Ʃ𝑥2

2 − Ʃ𝑥1𝑥2
2  

β̂2  = 
Ʃ𝑥2𝑦 Ʃ𝑥2

1 −(Ʃ𝑥1𝑦)(Ʃ𝑥1𝑥2)

Ʃ𝑥1
2 Ʃ𝑥2

2 − Ʃ𝑥1𝑥2
2  

Substituting ax2 for x1 

β̂1   = 
𝑎 Ʃ𝑥2𝑦 Ʃ𝑥2

2 −𝑎(Ʃ𝑥2𝑦)(Ʃ𝑥2𝑥2)

𝑎2 Ʃ𝑥2
2 Ʃ𝑥2

2 −𝑎2 Ʃ𝑥2𝑥2
2  = 0 

β2   = 
𝑎 Ʃ𝑥2𝑦 Ʃ𝑥2

2 −𝑎(Ʃ𝑥2𝑦)(Ʃ𝑥2𝑥2)

𝑎2 Ʃ𝑥2
2 Ʃ𝑥2

2 −𝑎2 Ʃ𝑥2𝑥2
2  = 0 

 
Therefore, co-efficients are indeterminate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. Take Y = β0 + β1X1 + β2X2 + u 
 If X1 and X2 are perfectly correlated (x1=ax2)  then the 
variables of β1 and β2 will be 

Variance of (β̂1) =[ 
Ʃ𝑒𝑖

2

𝑛−3
] [

Ʃ𝑥2
2

Ʃ𝑥1
2 Ʃ𝑥2

2 − Ʃ𝑥1𝑥2
2] 

Substituting ax2 for x1 

Variance of (β̂1) =[ 
Ʃ𝑒𝑖2

𝑛−3
] [

Ʃ𝑥2
2

𝑎2 Ʃ𝑥2
2 Ʃ𝑥2

2 −𝑎2 Ʃ𝑥2𝑥2
2] 

                             =[ 
Ʃ𝑒𝑖2

𝑛−3
] [

Ʃ𝑥2
2

0 ]=
 
∞ 

Therefore estimators have large standard errors 
3. Estimates of co-efficients will not be significant due to 
large standard error values, so they are not statistically 
reliable. Investigators may drop some variables from the 
model due to their insignificance. 
 



Tests for Multi-collinearity 

 to test the presence of multi-collinearity in 
the model the following tests may be conducted. 

1. Zero-order correlation matrix (crude method) 

 Higher zero order correlation along with low 
R̅2 are considered as the indication of presence of 
collinearity among the explanatory variables. 

2. Frisch’s Confluence Analysis or Bunch map 
analysis. 

3. Farrar-Glauber Test 



Solutions for Multi-collinearity 

1. Increase the size of the sample 

2. Introduce additional equations 

3. Use of extraneous information (extraneous 
information may be available from economic 
theories and past studies) 

4. Pooling time series and cross section data. 



Auto-correlation 
Meaning: Auto-correlation refers to the relationship between the succesive 
values of the disturbance term (u). It occurs when the assumption of E(uiuj)=0 
is violated. Thus in the presence of auto-correlation Cov(uiuj)=E(uiuj)≠0 
Or E(utut-1) ≠0. Which implies that the values of u in any particular period is 
correlated with its own proceeding value. 
Sources of Auto-Correlation 
 Auto correlation usually does not arise in cross section data. 
According to Tintner, it is a lag correlation between two different series. 
1. Auto correlation arises in the time series sample, which exhibits a 

significant long term movement over time. 
2. Cyclical fluctuations, which impose regularity among successive 

observations of the variables over time cause auto correlation. 
3. It arises due to specification bias. Which occurs due to exclusion of true 

variables from the regression equation. 
4. In case of Auto regressive model one of the explanatory variables is 

lagged value of the endogenous variable of the form Ct = f(Yt, Ct-1) leads 
to auto correlation. 



Consequences of Auto-Correlation 
1. OLS estimators are unbiased and linear 
2. The variance of OLS estimators are undeterminated. 
3. The OLS estimators will not be the best estimators 
4. The predictions will not be efficient. 
Tests for Auto-Correlation 
1. Graphic method: By regressing the model, derive et values, plot the 

points in a graph sheet. If the scatter follows a sloping upwards line, then 
the presence of possitive correlation is shown. On the other hand, if the 
scatter shows an up and down movement, then the presence of negative 
auto correlation is shown. If the scatter does not show any of these 
pattern, then there is no presence of auto correlation. 

2. Von-Neuman Ratio Test 
3. Durbin – Watson Test 
Solution for Auto-Correlation 
 In order to delete the effects of auto-correlation the given model is 
to be transformed for the purpose of obtaining the best linear unbiased 
estimators of the parameters. 



HETEROSCEDASTICITY 

Meaning: In a simple linear regression model, 
the OLS estimators are derived by assuming that 
E(ui

2) = σ2u for all I = 1,2,…..n. That is, the error 
terms are assumed to have homoscedastic 
variances. In some cases the disturbance terms 
do not have same variance. Such situation of 
non-homogenity of variance is called 
heteroscedasticity. 

E(ui
2) = Var(ui) ≠ σ2u or Var(ui) =f(Xi) σ

2u = σ2ui 
for I = 1,2,3….n, when Yi = α + βXi + ui 



Sources and types of Heteroscedasticity 
 Heteroscedasticity occurs only in cross section data with the 
following types 
i. As Xi value increases, Var (ui) also increases. So var (ui) = K2Xi

2 

ii. As Xi value increases, var(ui) is maximum in the middle value. So 
Var(ui) = f(Xi) 

iii. As Xi increases, Var(ui)decreases, So, Var(ui) = K2(1/Xi
2). 

 For eg. Consider family budget study of consumption  
Ci = α + βYi + ui where Ci is household consumption and Yi is disposable 
income of household. At low level of income, variations in 
consumption are not possible as it implies starvation at limited money 
income. So, consumption patterns are more similar at lower income 
levels than at higher levels. This shows type (a) heteroscedasticity. 
 In a cross section study of C-D production function  
Xi = ALi

αKi
βeui the level of output is influenced by technology and 

economies of scale. So there will be much of variation among large 
units than among small units with type (a) heteroscedasticity. 



Consequences of Heteroscedasticity 

 In the simple linear regression model,  

Yi = α + βXi + ui  

1. The OLS estimators are still linear function of 
Yi. 

2. The OLS estimators are still unbiased. 

3. Variances of OLS estimators will not correct. 

4. OLS estimators will not be the best 
estimators. 



Tests for Heteroscedasticity 
1. The spearman Rank Correlation Test: First regress Y on 

X to obtain the residuals e = Y - Ŷ. Next arrange X 
values in ascending order and compute rank 
correlation between X and e. High and significant 
correlation indicates the presence of 
heteroscedasticity. 

2. The Goldfeld and Quandt test 
3. The Park test 
4. The Glejser test 
Solution for Heteroscedasticity 
  After testing for presence of a particular form of 
heteroscedasticity, suitable method of transformation of 
the given model is followed. 



UNIT-V 
PROBLEMS IN OLS ESTIMATION 

Specification Problems and bias-errors in variables – dummy variables –lag models. 
 

SPECIFICATION ERROR 
 
Meaning: The specification of a model consists of formulation of the regression 
equation and of assumptions concerning the variables. The most common 
specification errors are those resulting from, 
1. Omission of relevant explanatory variable from the function. 
2. Inclusion of irrelevant explanatory variable in the function. 
3. Omission of some equations from the model. 
4. Incorrect mathematical form of the function. 
 
Sources 
 Specification error arises due to  
1. Limited knowledge of the variables. 
2. Non-availability of required data and 
3. Imperfection of economic theory. 
 



Consequences 
1. Case of omission of relevant explanatory variable 
Consider the true function Y = β0+β1X1+β2X2+u, whereas Y= 
β0+β1X1+u is estimated. 
i) OLS estimator of β1 will be unbiased and consistent if the 

omitted explanatory variable X2 is not correlated with the 
variable X1 in the estimated function. The estimator of 
intercept will be biased and inconsistent.  

ii) OLS estimator of β1 will be biased and inconsistent if the 
omitted explanatory variable is related with the other 
explanatory variables in the estimated model. 

iii) The variance of β1 will always have an upward bias if the 
omitted explanatory variable is related with the other 
explanatory variables in the estimated model. 

iv) Test of significance of estimators would not lead to 
correct conclusions. 
 
 

 
 



2. Case of inclusion of irrelevant explanatory variable 
 Consider the true function Y = β0+β1X1+u, whereas Y=β0+β1X1+β2X2+u 
is estimated. 
i) OLS estimator of β1 will be consistent if the included explanatory 

variable X2 is not correlated with the variable X1 in the estimated 
function. 

ii) Otherwise if the included explanatory variable X2 is correlated with 
variable  X1 in the estimated function,  β1 will be an inefficient estimator 
with greater variance. 

iii) Larger variance reduces the precision of the estimates and the 
confidence intervals become wider 

3. Case of incorrect functional form 
 Suppose the true marginal cost function is MC=β0+β1X1+β2X2

2+u, 
whereas the linear function MC=β0+β1X1+u is estimated. Therefore OLS 
estimator will be biased. 
 
Solution 
 Consult economic theory and past studies to avoid mis-specification. 



MEASUREMENT ERROR 
Meaning: Measurement errors refers to the errors in the 
measurement of either the dependant variable or the explanatory 
variables or both. It is different from equation error. 
Sources 
 All economic data are subject to some errors of measurement 
due to 
1. Errors in sampling, errors in extrapolation of sample results and 

aggregation in most of the published data. 
2. Use of variable different in content such as GNP in place of 

disposable income due to non-availability of income variable for 
estimation of Keynesian consumption function. 

3. Use of inappropriate price indices for the purpose of deflating 
current values to arrive at constant price values in time series 
data. 

4. Use of indices as explanatory variables for the regression model. 
 



Consequences 
1. Errors of measurement in endogenous variable 
 In the SLRM Yi* = α+βXi+wi where wi=ui+vi will satisfy the usual 
assumptions if both ui and vi satisfy them and cov (ui, vi) = 0. Here ui is 
equation error and vi is measurement error. 
i) β̂ will be an unbised estimator 
ii) The variances of estimated parameters are larger than in the case 

when there are no measurement errors. 
iii) The estimators will be inefficient and so they will not be BLUE. 
2. Errors in measurement of explanatory variable 
 In the SLRM Yi* = α+βXi*+ui suppose Xi* is the true value and 
Xi = Xi* +vi is the observed value. 
So the model becomes Yi = α+βXi+wi, where wi = ui – βvi. 
i) OLS estimators will be biased 
ii) OLS estimators will be inconsistent 
So the errors of measurement pose agreat threat to the validity of the 
standard interpretation of the estimators. 



Solutions 
1. Inverse least squares method: This method is 

appropriate only when errors of measurement 
are found in  the explanatory variable but not in 
the dependent variable. 

2. Wald’s Two Group Method: This method is 
applied when there are errors in the 
measurement of either X or Y or both. 

3. Bartlett’s Three Group Method: This method is 
applied when there are errors in the 
measurement of either X or Y or both. 

4. Weighted Regression Method: This method is 
applied when there are errors in the 
measurement of either X or Y or both. 

 
 

 



LAGGED VARIABLES 

Meaning: In economics generally a cause produces its effect only after a lapse 
of time, called a lag. These lags are of importance in decision making by the 
planners to know the fastness of impact of tax on consumers and incentives 
on production. 
For eg. Consumption function Ct = f(Yt, Yt-1, Yt-2, …..Ct-1, Ct-2….) 
Investment function It = f(Xt, Xt-1, Xt-2…..) 
Types 
 The endogenous variable depends upon current and past values or 
lagged values of the endogenous variables. 
1. Distributed Lag Model 
 It is a model including only lagged values of the explanatory variables 
  Yt = β0Xt+β1Xt-1+ β2Xt-2 + …..+ β8Xt-8+ ut 

The number of lags in the model may be either finite or infinite. 
Short run or impact multiplier = β0 
Long run or distributed lag multiplier =  βi𝑛

𝑖=0  
Delayed or interim multiplier are β1, β2, …β8 

2. Auto regressive Model 
 It is a model including lagged values of the endogenous variable in 
the form as,    Yt  = α + βXt +rYt-1 +ut 

 
 



Sources for Lag 
1. Technical Reasons: Production requires time and 

supply of a commodity depending upon the 
production process, which also depends upon 
lagged prices of inputs. 

2. Institutional Reasons: Contractual obligations 
and certain rules like fixity of deposits will take 
time to respond to better money market 
conditions. 

3. Psychological reasons: Behaviour is often based 
on taste and habit. The change in consumption 
habit is a slow process depending upon whether 
the income change is permanent or transitory.  



Consequences 

1. One period lag model reduces the sample size by one. 

2. If the number of lag is large and n is small and it may not be possible to 
estimate the parameters for estimating MLRM. 

3. Multi-collinearity may arise due to strong correlation between the 
successive values of the same variable. 

4. The OLS estimators may become biased and inefficient. 

Solutions 

 There are two approaches to solve the problem due to lagged 
variable. 

1. Kyock Approach to Distributed lag model 

 It is based on the assumption that the variables in the distant past 
have smaller impact. So the β values are declining continously (Geometric lag) 

2.      Almon Approach to the Distributed Lag models 

 It is a far more flexible method in terms of the form of lag scheme 
and it does not lead to violation of the basic assumptions of the error term.
  



DUMMY VARIABLE 

Meaning: Dummy variables are those of qualitative characters such as profession, 
religion, sex, region, season, literacy, and war period. Since such characteristics can 
not be measured, we assign a value of 1 to the presence and zero to the absence of 
the attribute. These are also called binary variables, indicator variables or categorical 
variables. 

Types of Dummy Variables 

There are two types of model with dummy variables. 

1. Analysis of Variance (AOV) Models 

 Models that contain only dummy variables for explanatory variables are 
called Analysis of variance (AOV) models, which are common in sociology and 
education. In econometric research  

consider Yi=α+βDi+ui 

Where Yi is salary of ith worker and Di represents literacy as a dummy variable. 

Di = 1 if the worker has high school level education and above 

Di = 0 if otherwise. 

Assuming that ui satisfies all the assumptions under OLS 

We get, ŷ = α̂ for Di = 0 and ŷ = α̂ + β̂ for Di =1. 

So β̂ measures the difference in the worker’s mean salary due to higher education. 



2. Analysis of Co-Variance (ACOV) Models 
 In most econometric research, models contain 
admixture of qualitative and quantitative variables, which 
are called Analysis of Co-Variance (ACOV) models. 
Consider the Consumption function 
 Ci = β0 + β1 Y1 + β2 D1i + β3 D2i + ui 

Where D1i = 1 if the household has children 
             D1i  = 0 if the household has no children 
             D2i  = 1 if the household owns a house 
             D2i   = 0 if the household does not owns a house 
β̂2 measures the difference in consumption due to 
children 
β̂3 measures the difference in consumption due to 
wealth. 
 



Rules of Dummy Variables 

1. By a priori consideration we should assign 0 and 
1 to two categories. The category for which zero 
is assigned is referred as base or control 
category. 

2. If the qualitative variable has n categories, then 
introduce only (n-1) dummy variables to avoid 
dummy variable trap. Otherwise estimation by 
OLS is not possible due to perfect multi-
collinearity. 

3. The coefficient attached to the dummy variable 
is called the differential coefficient due to that 
variable. 

 

 



Uses of Dummy variables 
1. To measure the shift of a function over time 
 During war times controls restrict the availability of 
consumer goods which may shift the consumption function 
downwards. 
Instead of usual function Ct = α + β1Yt + ut  
We consider Ct = α + β1Yt + β2Dt + β3YtDt + ut 

Where  
Dt = 1 for war years and zero for normal years. 
 β̂2 gives differential effect on subsistence level of 
consumption and  
β̂3 gives differential effect on MPC due to war. 
 Ĉt = (α ̂+ β̂2) + (β̂1 + β̂3)Yt        War period equation 
 Ĉt = α ̂+β̂1 Yt              Normal period equation 
We expect β̂2 and β̂3 are negative. 
 



2. To isolate seasonal component from time series 
 In case of quarterly data for economic time series 
deseasonalisation is done by identifying presence of seasonal pattern 
in the intercept and slope of the SLRM Yt = α + β Xt + ut as 
 Yt = α +βXt + r1D1 + r2D2 + r3D3 + e1D1Xt + e2D2Xt +e3D3Xt + ut 

With D1 = 1 if it is Q2 and 0 otherwise 
          D2 = 1 if it is Q3 and 0 otherwise 
          D3 = 1 if it is Q4 and 0 otherwise 
 The significance of r values and e values will reflect the 
presence of seasonal pattern respectively in the intercepts or slope 
values 
3. To estimate discriminating functions 
 Consider a qualitative dependent variable Di = α + βXi + ui to 
explain purchase of car (D1) on family income (Xi) 
 Di = 1 if the family purchases a new car and 0 otherwise. In this 
case ui’s will not follow normal distribution and they are 
heteroscedastic. So OLS estimates although unbiased are not efficient. 
 


